2019
Graduate Diploma in Engineering with strands in:
Water and Waste
Mechatronics
Structures
Building Services

Credit Value 120 Credits
School Welcome
Welcome to the School of Engineering, we hope you enjoy the time you are here studying with us. The below people are experts in their field and are looking forward to sharing their knowledge with you.

Programme Staff

<table>
<thead>
<tr>
<th>Title</th>
<th>Name</th>
<th>Phone</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head of School</td>
<td>Graham Carson</td>
<td>920 2542</td>
<td>graham.carson@wandw.ac.nz</td>
</tr>
<tr>
<td>Associate Head of School</td>
<td>Malcolm Fair</td>
<td>920 2547</td>
<td>malcolm.fair@weltec.ac.nz</td>
</tr>
<tr>
<td>Tutors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frank Beinersdorf</td>
<td>830 2029</td>
<td>frank.beinersdorf@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Trevor Brown</td>
<td>830 0799</td>
<td>trevor.brown@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Frank Cook</td>
<td>830 0796</td>
<td>frank.cook@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Penelope De Boer</td>
<td>920 2754</td>
<td>penelope.deboer@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Adrian Ferguson</td>
<td>830 0770</td>
<td>adrian.ferguson@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Gelasio Franco</td>
<td>830 0723</td>
<td>gelasio.franco@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Gareth Gretton</td>
<td>830 0728</td>
<td>gareth.gretton@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Leigh Grinlinton</td>
<td>830 0769</td>
<td>leigh.grinlinton@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Fred Harris</td>
<td>830 2012</td>
<td>fred.harris@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Chris Heydenrych</td>
<td>830 2001</td>
<td>chris.heydenrych@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Najif Ismail</td>
<td>920 2405</td>
<td>najif.ismail@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Ruwan Jayasooriya</td>
<td>830 0761</td>
<td>ruwan.jayasooriya@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Andrew Kopnoff</td>
<td>830 3190</td>
<td>andrew.kopnoff@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>James Mackay</td>
<td>830 3151</td>
<td>james.mackay@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Milad Naghibi</td>
<td>830 2067</td>
<td>milad.naghibi@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Sunethra Pitawala</td>
<td>830 3189</td>
<td>sunethra.pitawala@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>David Stevens</td>
<td>830 0896</td>
<td>david.stevens@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Frans Weehuizen</td>
<td>830 0734</td>
<td>frans.weehuizen@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Induka Werellagama</td>
<td>830 2090</td>
<td>induka.werellagama@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>John Wray</td>
<td>920 2421</td>
<td>john.wray@weltec.ac.nz</td>
</tr>
<tr>
<td></td>
<td>Rudi Zettler</td>
<td>920 2601</td>
<td>rudi.zettler@weltec.ac.nz</td>
</tr>
</tbody>
</table>

Your Programme Handbook
This handbook provides information specific to your programme of study this year. You will also receive a Course Outline for each course you are enrolled in during the first week of your study. The Student Guide provides all other information you will need to support your study, including policies and procedures that apply to students. You will find the Student Guide on the website.
Programme Aim
The aim of the Graduate Diploma in Engineering is to create multi-disciplinary technology professionals who have the ability to undertake high-level design, specification and project management within a specific selection of subject areas. In addition, the qualification provides technology professionals with multi-disciplinary skills and knowledge from strands including Mechatronics, Water and Wastewater, Structures and Building Services.

Graduate Profile
On successful completion of the Graduate Diploma in Engineering, students will have the ability to:

- Apply specialised technical knowledge and skills to a specific engineering field
- Apply skills in an organised approach to problem solving
- Display well-developed critical thinking capabilities, including analysing, evaluating and critically reflecting on information, decisions and behaviour to enable strategic thinking and adaptability in a constantly changing global environment
- Recognise, adopt and where necessary, instil in others ethical dimensions inherent in business decision making having particular regard for issues of social responsibility and sustainable practice
- Exercise self-direction and adopt independent working practices, and an ability to foster these in others
- Accept responsibility for the quality of their own work outcomes, and, where applicable, for the quality of others’ work outcomes
- Apply independent learning skills that encourage the regular accessing of new knowledge and information
- Use effective written communication and well-developed inter-personal skills
- Use technology and communication systems effectively.

Students completing the Mechatronics Strand will also be able to:

- Design, specify, plan, organise, and implement a mechatronic system
- Manage and work effectively with a team of domain specialists in the core technologies of Mechanical Systems, Power Systems, Control Systems and Automation Systems
- Integrate and test multi-disciplinary mechatronic projects
- Compare, contrast and evaluate alternative approaches to mechatronic system designs
- Effectively plan the extension and upgrading of existing implementations.

Students completing the Water and Waste Engineering Strand will also be able to:

- Analyse and generate solutions for water and waste problems
- Design, specify and plan implementation of water and waste systems
- Effectively plan the extension and upgrading of existing implementations
- Recognise and consider social, political and environment impacts on water and waste management.

Students completing the Structures Strand will also be able to:

- Investigate the behavior of structural systems and elements
- Design structures using timber, masonry, steel, and concrete
- Articulate understanding of real-world open-ended design issues.

Students completing the Building Services Strand will also be able to:

- Provide advice for effective and efficient processes and principles, and quality systems, to the production of components and/or provision of mechanical building services
- Interpret drawings and/or specifications and select and use the appropriate engineering materials, processes, tools and equipment for the mechanical building services task being undertaken
Graduates will also have the appropriate skills and knowledge to pursue further study and professional development opportunities.

Pathways

Education: Further Postgraduate study

Employment:

Mechatronics
The Mechatronics Specialisation will enable students to consider careers in a wide spectrum of industries where complex software plays a major role, including the robotics, aerospace, building systems, chemical, Defence, automotive and manufacturing industries. Within these industries, students may undertake roles such as design engineers, software engineers, project planners, product designers or project managers.

Water and Waste Engineering
Water is coming under increasing pressure from demographic and climatic changes. Treatment processes play a key role in delivering safe, reliable supplies of water to households, industry and agriculture and in safeguarding the quality of water in rivers, lakes, aquifers and around coastal areas. Well educated, skilled and experienced graduates are required to operate and manage vital water and waste treatment services and stormwater management. The demand for such graduates is already high and will only increase over coming years as environmental standards for water quality increase, and pressures on our water supplies continue to grow.

Structures
Structural building engineering is primarily driven by the creative manipulation of materials and forms and the underlying mathematical and scientific ideas to achieve an end which fulfills its functional requirements and is structurally safe when subjected to all the loads it could reasonably be expected to experience. The recent earthquakes within New Zealand have highlighted the critical role that structures design plays in all areas of engineering.

Building Services
Building services engineers are responsible for the design, installation, and operation and monitoring of the mechanical, electrical and public health systems required for the safe, comfortable and environmentally friendly operation of modern buildings. Building services engineers work closely with other construction professionals such as architects, structural engineers and quantity surveyors. They influence the architecture of a building and play a significant role on the sustainability and energy demand of a building. Within building services engineering, new roles are emerging, for example in the areas of renewable energy, sustainability, low carbon technologies and energy management. With buildings accounting for around 50% of all carbon emissions, building services engineers play a significant role in combating climate change. As such, a typical building services engineer has a wide-ranging career path.

Programme Outline
The Graduate Diploma is designed so that students can complete the programme in one year’s full time study or be able to study part time while in employment. The part time option will enable engineering professionals to undertake further study to broaden their knowledge and currency.

Students must complete 120 credits at Levels 6 and 7 with a minimum of 75 credits at Level 7.

Each strand has compulsory and elective requirements which are detailed below. All strands have a compulsory 30 credit core compulsory course being either MG7101 Engineering Development Project or WW7103 Applied Research. Students will be required to do either the Project or Applied Research course in consultation with teaching staff.

The concept of applied learning is core to the Graduate Diploma; students apply knowledge, skills and capabilities in a variety of ways and contexts as they progress through their study. Students build upon sound relevant
Theoretical knowledge and apply this within the context of the Engineering Development Project or the Applied Research course.

The 30-credit Engineering Development Project course is normally completed in the final trimester of study; this is the capstone of the programme. The Project allows students to apply their knowledge to a workplace context and for them to reflect on their learning experience. It also prepares students for work through professional practice components. Their performance throughout the project is monitored and support processes will be implemented where necessary.

The 30-credit Applied Research course in contrast takes the form of a systematic inquiry involving the practical application of the specialist knowledge. It will access accumulated theories, knowledge, methods and techniques for a specific purpose.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Level</th>
<th>Credits</th>
<th>Compulsory/ Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG7101</td>
<td>Engineering Development Project</td>
<td>7</td>
<td>30</td>
<td>C</td>
</tr>
<tr>
<td>WW7103</td>
<td>Applied Research</td>
<td>7</td>
<td>30</td>
<td>C</td>
</tr>
<tr>
<td>MG7017</td>
<td>Robotics</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG7018</td>
<td>Systems and Control</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG6020</td>
<td>Automation</td>
<td>6</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG6033</td>
<td>Mechanics of Machines</td>
<td>6</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG7013</td>
<td>Embedded Systems</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG7024</td>
<td>Fluids Power and Advanced Fluids Mechanics</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG6032</td>
<td>Fluid Mechanics</td>
<td>6</td>
<td>15</td>
<td>E</td>
</tr>
<tr>
<td>MG6031</td>
<td>Instrumentation and Control 2</td>
<td>6</td>
<td>15</td>
<td>E</td>
</tr>
<tr>
<td>MG6019</td>
<td>PLC Programming 2</td>
<td>6</td>
<td>15</td>
<td>E</td>
</tr>
</tbody>
</table>

CHOOSE ONE
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Level</th>
<th>Credits</th>
<th>Compulsory/Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG7101</td>
<td>Engineering Development Project</td>
<td>7</td>
<td>30</td>
<td>C</td>
</tr>
<tr>
<td>WW7103</td>
<td>Applied Research</td>
<td>7</td>
<td>30</td>
<td>C</td>
</tr>
<tr>
<td>MG7005</td>
<td>Urban Drainage Systems</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>WW7100</td>
<td>Advanced Water Systems Engineering</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>WW7101</td>
<td>Water Resources Engineering</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>WW7102</td>
<td>Alternative Waste Treatment Engineering</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG6109</td>
<td>Water and Waste Engineering</td>
<td>6</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG6110</td>
<td>Water and Waste Systems</td>
<td>6</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG6011</td>
<td>Hydrology and Erosion Management</td>
<td>6</td>
<td>15</td>
<td>E</td>
</tr>
<tr>
<td>WW7101</td>
<td>Water Resources Engineering</td>
<td>7</td>
<td>15</td>
<td>E</td>
</tr>
<tr>
<td>WW7102</td>
<td>Alternative Waste Treatment Engineering</td>
<td>7</td>
<td>15</td>
<td>E</td>
</tr>
<tr>
<td>MG6007</td>
<td>Structural Steel and Timber</td>
<td>6</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG6008</td>
<td>Structural Concrete</td>
<td>6</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG6046</td>
<td>Structural Principles</td>
<td>6</td>
<td>15</td>
<td>C</td>
</tr>
</tbody>
</table>

Water and Waste Engineering Strand

Structures Strand

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Level</th>
<th>Credits</th>
<th>Compulsory/Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG7004</td>
<td>Design of Structures</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>SE7300</td>
<td>Dynamics of Structures</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG7025</td>
<td>Project Management</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG7023</td>
<td>Vibration and Seismic Design for Mechanical Plant</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG7007</td>
<td>Structural Steel and Timber</td>
<td>6</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG6008</td>
<td>Structural Concrete</td>
<td>6</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG6046</td>
<td>Structural Principles</td>
<td>6</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
<td>Level</td>
<td>Credits</td>
<td>Compulsory / Elective</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-------</td>
<td>---------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>MG7101</td>
<td>Engineering Development Project</td>
<td>7</td>
<td>30</td>
<td>C</td>
</tr>
<tr>
<td>MG7022</td>
<td>Energy Engineering</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG7023</td>
<td>Vibration and Seismic Design for Mechanical Plant</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG7030</td>
<td>Air Handling Systems</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>DE6303</td>
<td>Water Based Heat Transfer Systems</td>
<td>6</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>DE6019</td>
<td>Maintenance Engineering Management</td>
<td>6</td>
<td>15</td>
<td>C</td>
</tr>
</tbody>
</table>

Building Services Strand

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Level</th>
<th>Credits</th>
<th>Compulsory / Elective</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE6409</td>
<td>Electrical Building Services</td>
<td>6</td>
<td>15</td>
<td>C</td>
</tr>
<tr>
<td>MG7025</td>
<td>Project Management</td>
<td>7</td>
<td>15</td>
<td>C</td>
</tr>
</tbody>
</table>

CHOOSE ONE

Teaching and Learning Methods

This programme will be underpinned by a delivery philosophy of problem-based learning that will build learners’ capability to integrate theory and practice. As such, all courses in this programme will use a mix of delivery modes including one or more of:

- Face to Face
- On-line
- Project-based learning
- Self-directed
- Discussion and self-evaluation
- Experiential sessions/simulation exercises / role-plays
- Brainstorming, discussion and debate

The mode of delivery chosen for any course will ensure that the delivery does not impose unnecessary barriers to learners and that it adds value to the learning process and delivery philosophy.

Media used for delivery may include simulations, voice tools, discussion boards, interactive exercises/case studies, access to digital resources: video/film, information databases, digital books, other institutes’ resources where they are placed in open learning commons/repositories and a wide range of specialist websites. The type of technology and activities used during blended delivery are dependent on what is professionally appropriate to the course/strand.

Assessments

This programme utilises achievement-based assessment. Assessment is used within this programme as an instrument to measure student performance, to assist students in the learning process and to encourage self-critical independent thought. Formative assessment will create opportunities for students to self-appraise and obtain feedback from lecturers and peers, to guide improvement of the required knowledge and skills. It is conducted during courses to assist students to consolidate their knowledge and skills and evaluate their progress. Summative assessment is used to provide credit and evidence that the student has reached the required standard.
Assessment methods:

Case Studies, Assignments, Tutorial Activities, and Projects will be used to ascertain the extent to which students are able to: locate, obtain, organise and analyse information, identify and solve problems, exercise judgement, present and defend views effectively, select and assign priorities within restricted resources to meet deadlines, demonstrate mastery of practical tasks, integrate specific knowledge of the disciplines contributing to business and management research, new topics, evaluate alternative methodologies, and design novel solutions.

Group Assignments and Presentations will be used to assess the extent to which students are able to: transfer and receive information effectively, present and defend their views through formal and informal, written, graphical and oral presentation, demonstrate and develop the interpersonal abilities needed for a career which requires cooperation and participation in group decision making.

Tests and Examinations will be used to assess the extent to which students are able to: recall and apply knowledge, recall and apply theoretical models, demonstrate comprehension of and responsiveness to unknown scenarios and problems, demonstrate ability to communicate in the written form under specific constraints.

Self and Peer Assessment may be used: for assessments where the application of standards is made by the student or their peers to their own and others’ work.

Reflective Exercises may be used: to assess the extent to which students are able to evaluate experience in the light of theories, research and practice.

General: There will be more weight placed on individual rather than group work components, to ensure that students are achieving the required standards. Where possible integrated assessment will be used to enhance the interrelatedness of courses and reduce the overall quantity of assessment. Assessment tasks and activities will be designed to help develop the ‘soft’ skills required by managers, including interpersonal communication, work ethic, diplomacy, working with and within groups and teams, and leadership. Information on the assessment policies and procedures can be found in the Student Guide.

Progress through Programme

This programme will normally be completed in two trimesters of full time study. The trimesters do not have to be consecutive.

The programme must be completed within a 3 year time frame.

Timetable

Online timetables can be found here.

Tips for success

Keep in touch. If you think you are going to struggle with something or you feel you are struggling please ask for help as soon as possible. Do not leave it until you feel like your only option is to stop coming to class or withdraw from the course or programme. Your tutor wants you to succeed, so please don’t be afraid to talk to them we have lots of support options to help you succeed.

Attendance matters. History shows that the chance of passing a course is much higher if you come to all the timetabled classes.

Ask questions, there are no “dumb” questions. Rest assured there will be at least three other people in the class thinking “good question” when you ask it, but don’t wait for them to pluck up the courage, take the lead.
What You Need

Laptop with the following specifications for:

- Operating Systems: On request, we can provide suggestions on where to look for detailed guidance on hardware requirements to run CAD drawing packages. There is lots of information on the internet about suitable minimum specification hardware to run various CAD packages. Two common CAD packages extensively used in the WelTec engineering school are:
 - SolidWorks
 - AutoCAD

To some extent the minimum specification depends on the engineering major being studied.

- Please note that Windows systems must have 64-bit operating system.
- CPU: 64-bit processor with at least 4 cores
- RAM: 8 GB
- Hard Drive: 5 GB free space – with an additional 10 GB space per project
- Display: 1440 x 900 resolution is recommended
- Video Card: Open GL 2.0 compatible graphics card with on-board memory of 1024 MB. A list can be found here.
- Mouse: a mouse with a central wheel

- Course Textbook find them here
- Usual assortment of Pens, Pencil, Paper
- A way to get to Classes
- Brain switched on
- Ability to ask questions

PPE (Personal Protective Equipment)

- Steel Cap Shoes or Boots for the Mechanical Workshop, Labs and Site visits
- Safety glasses
- Dust Coat or Overalls (preferably cotton)

Please refer to the Student Guide for all general information about studying here.

Award of Qualification

The Graduate Diploma in Engineering (strand) will be awarded to all students who successfully complete all the requirements for the strand. The award title will include the named strand.

Graduation forms can be found here.
1. **Introduction**

1.1 The institutions promote lifelong learning and are committed to working with students to provide a quality educational experience in accordance with the expectations of *T2-R1 Our Commitment to Learning*.

1.2 These Regulations set out the rights and responsibilities of students to support their own learning and to maintain a safe learning environment.

1.3 The Regulations are consistent with current legislation.

2. **Scope**

2.1 These regulations apply to all students enrolled at the institutions, on or off campus, participating in any course related activities, and any other student activity or conduct which could impact on the institutions' operations or reputation.

2.2 When required, disciplinary action is intended to be primarily educative and then to discourage recurrence. The institutions reserve the right to address any specific situation as is considered appropriate.

3. **Students Rights**

Students have the right to:

3.1 Competent, professional and effective teaching

3.2 Current and relevant teaching content

3.3 Regular, prompt and constructive feedback

3.4 Fair, valid and reliable assessment

3.5 A consistent learning experience with a reasonable workload

3.6 Opportunity to give feedback on the teaching, programme and student experience

3.7 Be treated with fairness, dignity and respect by staff and other students in accordance with the principles of te Tiriti o Waitangi and natural justice

3.8 A safe, secure and inclusive environment in which all staff and students can flourish and be valued

3.9 Freedom from intimidation, violence, bullying, cyber-bullying, unreasonable disruption, unlawful discrimination, or any harassment

3.10 Trustworthy handling and retention of personal confidential information while at any campus or while engaged in institutional activities

3.11 Access to appropriate and sufficient learning spaces and resources

3.12 Access to appropriate academic, health, welfare, cultural and pastoral support

3.13 A safe, clean and healthy working environment

3.14 Access to Regulations and Procedures that affect students, including those for dealing with student concerns and complaints, at the commencement of their studies

3.15 Access to their student record

3.16 Representation on the Academic Board
4. **Student Responsibilities**

Students:

4.1 Prepare for and actively participate in learning events

4.2 Build and sustain the learning environment by giving and receiving constructive feedback

4.3 Maximise learning by willingly learning independently, experientially and collaboratively

4.4 Contribute positively to the learning experience of others

4.5 Be truthful and trustworthy

4.6 Respect the dignity and rights of all members of the campus

4.7 Apply te Tiriti o Waitangi and institutional values in daily practice

4.8 Respect the environment and property of staff, students, visitors and residential neighbours

4.9 Contribute to an environment that is free from intimidation, violence, bullying, unreasonable disruption, unlawful discrimination, or any harassment of other students, staff or any member of the public

4.10 Maintain privacy of confidential information while at any campus or while engaged in institutional activities

4.11 Keep campus buildings and grounds smoke free

4.12 While on any campus or undertaking any institutional activities be free from the influence of:
 a) Any drug that is not lawfully prescribed for that student
 b) Alcohol, except where it has been expressly permitted

4.13 Maintain a safe and healthy working environment whether on campus or studying off-site

4.14 Advise of any need that may require additional health and safety support

4.15 Carry a student identification card while on campus

4.16 Comply with safety rules and procedures including fire and emergency evacuation procedures

4.17 Notify a staff member as soon as possible of any actual or potential hazards, incidents, accidents or emergency situations on any campus or in relation to any institutional activity or course

Information and Communication Technology

4.18 Ensure activities on their own network accounts meet the standards of conduct appropriate to an educational institution.

4.19 Use their network accounts or permitted institution systems or hardware exclusively for their own use; they must not:
 a) Copy, modify or install software without authority
 b) Infringe copyright regulations or any intellectual property
 c) Access, obtain, alter, add or erase data without proper authority
 d) Disable or make unusable institution-owned ICT equipment or software
 e) Incur cost to the institution or anyone else, except where prior express authority is obtained
 f) Use electronic or online communication such as email, video conference, instant messaging, learning management systems such as Moodle, other collaboration tools or social media (including but not limited to Twitter, Facebook and other internet functions or sites) in a manner which:
 o brings or is likely to bring the institutions into disrepute
 o breaches the Harmful Digital Communications Act 2015 (such as cyber bullying, or harassment)
 g) Access, store, view, publish or distribute material which is objectionable, or offensive or otherwise inappropriate in an educational institute
 h) Permit anyone else to use their network accounts or any institution system or hardware
5. **Links**

5.1 The relevant legislation includes the following (together with any amendments or re-enactments):

 a) The Treaty of Waitangi Act 1975
 b) Misuse of Drugs Act 1975
 c) Official Information Act 1982
 d) Sale of Liquor Act 1989
 e) The Education Act 1989
 f) New Zealand Bill of Rights Act 1990
 g) Health and Safety at Work Act 2015
 h) Film, Videos and Publication Classification Act 1993
 i) Human Rights Act 1993
 j) Privacy Act 1993
 k) Copyright Act 1994
 l) Harassment Act 1997
 m) Copyright Infringement File Sharing Amendment Act 2011
 n) Harmful Digital Communications Act 2015

5.2 Principles of te Tiriti o Waitangi

5.3 Relevant Taikura documents include:

 - *A4-P8 Academic Integrity*
 - *A5-P5 Student Conduct*